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Example of Indeterminacy in Classical Dynamics 
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The case of a particle moving along a nonsmooth constraint under the action of 
uniform gravity is presented as an example of indeterminacy in a classical 
situation. The indeterminacy arises from certain initial conditions having 
nonnnique solutions and is due to the failure of the Lipschitz condition at the 
corresponding points in the phase space of the equation of motion. 

1. I N T R O D U C T I O N  

An often unstated assumption of  classical mechanics is that the laws of  
dynamics yield deterministic models. This assumption is formally captured 
in Newton's principle of determinacy (Arnold, 1984, p. 4): 

�9 The ini t ialposit ions and velocities o f  all the part icles  o f  a mechanical  
system uniquely determine all o f  its motion. 

The developments in physics since the early decades of this century have 
shown that our physical world is not completely empirically deterministic, that 
is, the motion of a mechanical system cannot be fully determined from 
physical measurements of the initial positions and velocities of  its points. In 
particular, chaos theory has shown that infinite precision is required in the 
measurements of initial conditions for the motion to be fully predicted even 
qualitatively. On the other hand, Heisenberg's uncertainty principle holds that 
simultaneous measurements of positions and velocities can be made only 
with limited precision. The presence of noise further limits the accuracy of 
measurement. In spite of  these fundamental limitations on our ability to make 
predictions from empirical observations, it is generally believed that models 
obtained from classical mechanics are completely deterministic and, if obser- 
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vations could be made with infinite precision, then predictions could be made 
with unlimited accuracy. In this paper, we present a counterexample to this 
widely held notion. 

The counterexample, given in Section 2, consists of a particle moving 
along a nonsmooth (C t but not twice differentiable) constraint in a uniform 
gravitational field. It is shown that, for certain initial conditions, the equation 
of motion possesses multiple solutions. The motion of the particle starting 
from these initial conditions cannot, therefore, be uniquely determined based 
on physical laws. Thus this example provides an instance of indeterminacy 
in classical dynamics as a direct counterexample to the principle of determi- 
nacy stated above. 

In Section 3, we present a modification of this counterexample. The 
modification consists in replacing the original constraint by a spatially peri- 
odic nonsmooth constraint that divides the configuration space of the particle 
into "potential wells." The equation of motion in this case possesses multiple 
solutions for initial conditions that correspond to zero total mechanical energy. 
For a smooth (C ~) constraint, the particle is forever confined to remain in 
the potential well in which it is initially located if the total mechanical energy 
is zero (or less). In the case we consider, if the particle is initially located 
in one of these potential wells with zero total mechanical energy, then there 
exist solutions of the equation of motion which correspond to the particle 
leaving the potential well after a finite amount of time. At any given instant, 
the only prediction that can be made about the particle is that it is located 
somewhere in any one of a certain number of potential wells and, furthermore, 
this number increases with the passage of time. 

Both of the examples mentioned above possess equilibria that are finite- 
time repellers; solutions starting infinitesimally close to such points escape 
every given neighborhood in finite time. Mechanical systems can exhibit 
similar behavior in the presence of non-Lipschitzian dissipation (Zak, 1993) 
or controls (Bhat and Bernstein, 1996). However, the examples presented 
here are completely classical and involve neither dissipation nor controls. 

2. AN EXAMPLE OF INDETERMINACY 

Consider a particle of unit mass constrained to move without friction 
in a vertical plane along the curve y -- h(x) under the action of uniform 
gravity. For convenience, assume the gravitational acceleration to be unity. 

The total mechanical energy of the particle is given by 

E(x, ,r = �89162 + h'(x) 2] + h(x) (1) 

while the Lagrangian for the particle is given by 

L(x, ,r = �89162 + h'(x) 2] - h(x) (2) 
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The Lagrangian yields the equation of  motion 

�9 [1 + h'(x) 2] + ~h'(x)h"(x)  + h'(x) = 0 (3) 

Now, consider 

h(x) = - I x l %  x ~ R (4) 

where et ~ (3/2, 2). Figure 1 shows a plot of  this constraint for ot = 9/5. 
We claim that with h(.) given by (4), equation (3) admits nonunique solutions 
for the initial conditions 

x(O) = 0, :~(0) = 0 (5) 

To show this, consider the differential equation 

q(t) = [(2 - ct)/x/~][1 + ot2(q(t))4(a-I)lt2-a)] -1/2 (6) 

Note that a e (3/2, 2) implies that 4(ct - 1)/(2 - ct) > 4. Hence the right- 
hand side of (6) is C 4 in q and bounded on R. It thus follows that there exists 
a unique function "r(-) on [0, oo) that satisfies (6) and the initial condition 
r(0) = 0. Moreover, "r(-) is twice continuously differentiable. 

It follows by direct substitution that the function ['r(-)] 2~(2-~') satisfies 
(3) and (5). In fact, this same function delayed in time by an arbitrary positive 
constant T also satisfies (3) and (5). To make this precise, define 

xr(t)  = O, t <- T (7) 

= ['r(t - T)] 2/(2-~), t > T (8) 

], 

l: 
--9/5 

Fig. 1. Constrained particle in uniform gravity. 
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Then it follows by direct substitution that, for every T -> 0, the functions 
- x r ( ' )  satisfy (3) and (5). The functions xr and -Xr  correspond to the particle 
remaining at rest at x = 0 for time T and then moving off to the right and 
left, respectively. 

Figure 2 shows the phase portrait for (3) with ct = 9/5. The origin is a 
saddle-point equilibrium and the sets 5P = {(x, ~): E(x, ~) = 0, x.s -< O} and 
oR = {(x, ~r E(x, .~) = 0, x~ -> 0}, which are shown in Fig. 2, are the 
corresponding stable and unstable manifolds, respectively. Solutions to initial 
conditions contained in 9~ converge to the origin in finite time, while solutions 
to initial conditions contained in oR converge to the origin in backward time. 
For the solutions Xr described above, (Xr(t), ~r(t)) lies in oR for all t --- 0. It 
is easy to see that for every initial condition in 9 0 , (3) possesses multiple 
solutions. For such initial conditions, the motion of the particle cannot be 
uniquely determined. This phenomenon represents indeterminacy in a classi- 
cal situation and is a counterexample to Newton's principle of determinacy 
stated above. 

3. A FURTHER EXAMPLE OF INDETERMINACY 

The indeterminacy seen above can be made even more striking by 
replacing (4) by 

h(x) = - Icos(x)  I '~, x e R (9) 

-1.5 -1 -O.S 0 0.5 1 1.5 2 

Fig. 2. Phase portrait for (3). 
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Fig. 3. Particle under periodic constraint. 

where et ~ (3/2, 2) as before. As Fig. 3, which corresponds to ot = 9/5, 
shows, the constraint divides the configuration space into the potential wells 
~162 n = {x: �89 - 1)'rr -< x <- �89 + 1)'tr}, n = . . . ,  - 1 ,  0, 1 . . . . .  

The points (�89 + 1)-tr, 0), n = . . . ,  - 1 ,  0, 1 . . . . .  are saddle-point 
equilibria that are connected by heteroclinic orbits. The set {(x, ~): E(x, 3t) 
= 0} is the union of these heteroclinic orbits. Because of the non-Lipschitzian 
nature of the equation (3), solutions starting in the stable manifold of  any 
one of these points converge to that point in finite time, while solutions 
starting in the unstable manifold leave every neighborhood of that point in 
a finite time. 

Suppose the particle is initially located in ~r with zero total mechanical 
energy. Then, depending on the direction of its initial velocity, the heteroclinic 
structure will bring the particle to rest at one of the crests ---xr/2 in a finite 
amount of time. As in the previous example, there exist solutions which 
correspond to the particle staying at rest at x = ___'rr/2 for an arbitrary 
amount of time before sliding off  to the right or the left. Every solution that 
corresponds to the particle moving off brings the particle to rest at some 
other crest in a finite time. This argument can be used repeatedly to show 
that given an initial condition in ~ with zero total mechanical energy, for 
every integer n there exists a solution x( ')  with x(t) ~ ~cn for all t ----- T for 
some T. In other words, it is not possible to predict in which potential well 
the particle will be found after a certain finite amount of time from the initial 
instant. The only prediction that can be made at any instant is that the particle 
is located somewhere in any one of  a certain number of potential wells. 
Moreover, this number increases with time. This means that we can predict 
less and less about the particle as time passes. 

4. CONCLUSIONS 

The examples given in the previous sections show that classical mechani- 
cal situations can exhibit a lack of determinacy even in the absence of  
disturbances and noise. This lack of  determinacy is distinct from the empirical 
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indeterminacy that arises from sensitive dependence on initial conditions, the 
uncertainty principle, and random noise. Our examples provide situations 
whose outcome cannot be predicted theoretically. Finally, this effect would 
be difficult to demonstrate empirically due to noise and dissipation. 
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